Current Issue : January-March Volume : 2022 Issue Number : 1 Articles : 5 Articles
A drug delivery system was specifically designed for the treatment of rheumatoid arthritis (RA) by local percutaneous administration and the nano-controlled release of methotrexate (MTX). The release behavior of MTX from the synthesized MTX-mSiO2@PDA system was investigated in vitro and in vivo. The obtained results show that after 48 h, twice as much MTX (cumulative amount) is released at pH 5.5 than at pH 7.4. This suggests that the MTX-mSiO2@PDA system exhibits a good pH sensitivity. In vitro local percutaneous administration experiments revealed that the cumulative amount of MTX transferred from MTX-mSiO2@PDA to pH 5.0 receptor fluid through the whole skin was approximately three times greater than the amount transferred to pH 7.4 receptor fluid after 24 h. Moreover, in vivo experiments conducted on a complete induced arthritis (CIA) model in DBA/1 mice demonstrated that the thickness of a mouse’s toes decreases to nearly 65% of the initial level after 27 days of local percutaneous MTX-mSiO2@PDA administration. Compared to the mice directly injected with MTX, those administered with MTX-mSiO2@PDA by local percutaneous application exhibit much lower toe thickness deviation, which indicates that the latter group experiences a better cure stability. Overall, these results demonstrate that the local percutaneous administration of MTX delivery systems characterized by nano-controlled release may play an important role in RA therapy....
Background: β-Alanine is a sport supplement with increasing popularity due to its consistent ability to improve physical performance, with the downside of requiring several weeks of supplementation as imposed to the maximum daily and single dose tolerated without side effects (i.e., paresthesia). To date, the only alternative to overcome this problem has been use of a sustainedrelease tablet, while powders are the most commonly used format to deliver several grams of amino acids in a single dose. In this study we assessed the bioavailability, pharmacokinetics and paresthesia effect of β-alanine after administration in a novel controlled-released powder blend (test) versus a sustained-release tablet (reference). Methods: Twelve subjects (25.6 ± 3.2 y, 50% female) participated in a randomized, single-blind, crossover study. Each participant was administered orally the test (β-alanine 8 g, L-histidine 300 mg, carnosine 100 mg) or the reference product (10 tablets to reach β-alanine 8 g, Zinc 20 mg) with a 1-week washout period. β-Alanine plasma concentrations (0–8 h) were determined by LC-MS/MS and model-independent pharmacokinetic analysis was carried out. Paresthesia intensity was evaluated using a Visual Analog Score (VAS) and the categorical Intensity Sensory Score (ISS). Results: The CMAX and AUC0→∞ increased 1.6- and 2.1-fold (both p < 0.001) in the test product, respectively, which yielded 2.1-fold higher bioavailability; Ka decreased in the test (0.0199 ± 0.0107 min−1) versus the reference (0.0299 ± 0.0121 min−1) product (p = 0.0834) as well as V/F and Cl/F (both p < 0.001); MRT0→last increased in the test (143 ± 19 min) versus reference (128 ± 16 min) formulation (p = 0.0449); t1/2 remained similar (test: 63.5 ± 8.7 min, reference: 68.9 ± 9.8 min). Paresthesia EMAX increased 1.7-fold using the VAS (p = 0.086) and the ISS (p = 0.009). AUEC increased 1.9-fold with the VAS (p = 0.107) and the ISS (p = 0.019) reflecting scale intrinsic differences. Pharmacokinetic-pharmacodynamic analysis showed a clockwise hysteresis loop without prediction ability between CMAX, AUC0→∞ and EMAX or AUEC. No side effects were reported (except paresthesia). Conclusions: The novel controlled-release powder blend shows 100% higher bioavailability of β-alanine, opening a new paradigm that shifts from chronic to short or mid-term supplementation strategies to increase carnosine stores in sports nutrition....
With hollow mesoporous silica (hMSN) and injectable macroporous hydrogel (Gel) used as the internal and external drug-loading material respectively, a sequential drug delivery system DOX-CA4P@Gel was constructed, in which combretastatin A4 phosphate (CA4P) and doxorubicin (DOX) were both loaded. The anti-angiogenic drug, CA4P was initially released due to the degradation of Gel, followed by the anti-cell proliferative drug, DOX, released from hMSN in tumor microenvironment. Results showed that CA4P was mainly released at the early stage. At 48 h, CA4P release reached 71.08%, while DOX was only 24.39%. At 144 h, CA4P was 78.20%, while DOX release significantly increased to 61.60%, showing an obvious sequential release behavior. Photodynamic properties of porphyrin endow hydrogel (φΔ(Gel) = 0.91) with enhanced tumor therapy effect. In vitro and in vivo experiments showed that dual drugs treated groups have better tumor inhibition than solo drug under near infrared laser irradiation, indicating the effectivity of combined photodynamic-chemotherapy....
Dysphagia refers to difficulty swallowing certain foods, liquids, or pills. It is common among the elderly with chronic diseases who need to take drugs for long periods. Therefore, dysphagia might reduce compliance with oral drug administration in the aging population. Many pharmaceutical companies search for new products to serve as swallowing aids. Existing products are expensive and do not suit all geriatric patients. Therefore, this study aimed to develop and investigate pill swallowing aid gels prepared from carboxymethyl cellulose and chitosan. We formulated gels by dissolving different concentrations of carboxymethyl cellulose and low or high molecular weight chitosan in solvents to find appropriate gel rheology properties. We then added several portions of glycerin as the glidant of the formulation. We found that the optimized gel formulation was 6.25% (w/w) chitosan with a molecular weight of 80–120 kDa dissolved in 1.2% acetic acid and 4% (w/w) glycerin. The developed pill swallowing gel’s rheology was pseudoplastic with a viscosity of 73.74 ± 3.20 Pa·s. The developed chitosan gel had enhanced flow ability; it allowed the pill to cross a 300 mm tube within 6 s, while the reference product took 3 s. Even though the reference product could carry the pill in the tube faster, the chitosan gel better covered the pill, making it more convenient to use. Finally, using a theophylline tablet as a model tablet dosage form, we assessed the gel’s effect on drug disintegration and dissolution. The chitosan gel delayed the tablet disintegration time by about 3–7 min and slightly affected the theophylline dissolution rate. Lastly, all gels were physically stable after a month of storage in the stress condition. These results show the feasibility of manufacturing a chitosan gel usable as a pill swallowing gel for patients with dysphagia....
Background: Gastroretentive drug delivery system (GDDS) are novel systems that have been recently developed for treating stomach diseases. The key function of all GDDS systems is to control the retention time in the stomach. However, research into the bulk density or entanglement of polymers, especially regarding their effects on drug float and release times, is scarce. Methods: In this research, we prepared the floating core-shell beads carrying tetracycline. The ratio of chitosan and xanthan gum in the shell layer was changed to modify polymer compactness. Tetracycline was encapsulated in the alginate core. Results: Using scanning electron microscopy (SEM) techniques, we observed that the shell formulation did not change the bead morphology. The cross-sectional images showed that the beads were highly porous. The interaction between anionic xanthan gum and cationic chitosan made the shell layer dense, resisting to the mass transfer in the shell layer. Due to the high mass transfer resistance to water penetration, the longer float and delivery time were caused by the dense surface of the beads. The cell culture demonstrated that floating core-shell beads were biocompatible. Importantly, the beads with tetracycline showed a significant prolonged anti-bacterial effect. Conclusion: Research results proved that the floating and releasing progress of core-shell beads can be well controlled by adjusting the shell layer formulation that could promote the function of gastroretentive drugs....
Loading....